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This paper presents an infinite-horizon version of intergenerational utilitarianism. By studying
discounted utilitarianism as the discount factor tends to one, we obtain a new welfare crite-
rion: limit-discounted utilitarianism (LDU). We show that LDU meets standard assumptions on
efficiency, equity, and interpersonal comparability, but allows us to compare more pairs of util-
ity streams than commonly used utilitarian criteria do, including the overtaking criterion and
the catching-up criterion. We also introduce a principle of compensation for postponements of
utility streams and use it to characterize the LDU criterion on a restricted domain.
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1. INTRODUCTION

Utilitarianism is the normative theory which says that the best social policy in a set of alterna-
tives is the one with the greatest total welfare. Total welfare is often defined as the sum of the
utilities for all members of society. This notion of maximizing aggregate utility becomes prob-
lematic in infinite-horizon models. The problem of aggregating infinite utility streams u =

(u 1, u 2, . . .), representing the utilities of present and future generations, has occupied philoso-
phers and economists for over a century. Discounted utilitarianism provides a popular crite-
rion for evaluating such streams. But since discounting assigns smaller weight to future gen-
erations, discounted utilitarianism has also been the subject of heavy criticism.1 For instance,
Ramsey (1928, p. 543) calls discounting the utility of future generations an “ethically indefen-
sible” practice that “arises merely from the weakness of the imagination”. Koopmans (1960), in
his axiomatic approach to discounted utilitarianism, formally defines time preference through
the concept of impatience. Subsequently, a long tradition in welfare economics studies social
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preferences that combine two properties: the Strong Pareto axiom, saying that Pareto improve-
ments lead to better outcomes, and Anonymity, which models the equal treatment of any pair
of generations by insisting that preferences are not affected by permuting the utility level of
two generations. The formulation of criteria that satisfy these two properties, however, is ham-
pered by two major impossibility theorems. Firstly, if complete and transitive preferences over
infinite utility streams satisfy Strong Pareto and Anonymity, they cannot be represented by a
social welfare function.2 Secondly, such preferences cannot be obtained by constructive meth-
ods.3 Informally, all explicit descriptions of transitive preferences satisfying Strong Pareto and
Anonymity are incomplete.

The literature on explicitly defined intergenerational preferences satisfying Strong Pareto
and Anonymity therefore uses incomplete preferences. A social welfare relation (SWR) is a bi-
nary relation that is reflexive and transitive, but not necessarily complete. Utilitarian SWRs
often address the problem of ordering infinite-horizon streams u and v by looking instead at
their partial sums over a long, but finite horizon and seeing what happens if this horizon di-
verges to infinity.4 This is the case, for instance, for the overtaking criterion (von Weizsäcker,
1965), the catching-up criterion (Gale, 1967), and the utilitarian SWR of Basu and Mitra (2007).

Our approach is different. Instead of comparing u and v on the basis of the limit behavior
of the partial sums of u − v , we look at its discounted sum and let the discount factor tend to
one.5 Our limit-discounted utilitarian (LDU) criterion declares u to be at least as good as v if
the (lower) limit is nonnegative. This also avoids the critique of Ramsey (1928) because in the
limit, each pair of generations is treated equally. Our main results include:

The Compensation Principle. Informally, the Compensation Principle says that a utility
stream can be postponed for one generation if the first generation is compensated by the av-
erage utility over all generations. The precise formulation is in Section 2 where we also use
common axioms to motivate why this average is a reasonable compensation. Limit-discounted
utilitarianism satisfies the Compensation Principle and this property — or more generally, its
ability to compare well-behaved streams with compensated postponements — enables us to
rank pairs of streams when other SWRs can’t; see Example 2 for a concrete example.

Our criterion, like overtaking and catching-up, ranks the periodic stream u = (1, 0, 1, 0, . . .)
above v = (0, 1, 0, 1, . . .): u has average 1/2, so the Compensation Principle says that u is equiv-
alent with w = (1/2, 1, 0, 1, 0, . . .) where u is postponed for one generation and the first receives
compensation 1/2. And w Pareto dominates v , so by Strong Pareto and transitivity, u is pre-
ferred to v . Now, social welfare relations that satisfy Anonymity cannot be impatient in the
traditional sense of Koopmans (1960).6 But some authors7 argue that strictly preferring u to
v is a sign of a different type of impatience and advocate stronger anonymity notions using
classes of infinite permutations that require u and v to be equivalent. This equivalence, how-

2Diamond’s (1965) version of this result was obtained under an additional continuity assumption on the social
welfare function. The general impossibility theorem, without this assumption, is due to Basu and Mitra (2003).

3The existence of complete, transitive binary relations satisfying Strong Pareto and Anonymity was established
by Svensson (1980). Zame (2007, Theorem 4) and Lauwers (2010, p. 33) show that Svensson’s existence theorem
cannot be proved without using the Axiom of Choice.

4Formally, lim infT→∞

∑T

t=1(u t − vt )≥ 0 must hold if u = (u 1, u 2, . . .) is at least as good as v = (v1, v2, . . .).
5Discounting with discount factors tending to one has been used extensively in the literature on stochastic games

and dynamic optimization; see, e.g., Liggett and Lippman (1969), Lippman (1969), Dutta (1991), Sennott (1999), and
Bishop et al. (2014). Basu and Mitra (2007, p. 360-361) defend the relevance of vanishing discount rates for inter-
generational equity in a “robustness check” of their welfare criterion. They attribute the idea behind the robustness
check to Jörgen Weibull. Limit-discounted utilitarianism can be seen as a concretization of their line of thought.

6The definition of Koopmans (1960, p. 296) is for social welfare relations defined by social welfare functions.
By Banerjee and Mitra’s (2007, Sec. 2.2.2) more general ordinal formulation, impatience is displayed by strictly
preferring a stream u with u s > u t for some s < t to the stream obtained by switching u s and u t . With Anonymity,
these two streams are equivalent.

7For example, Lauwers (1995), Fleurbaey and Michel (2003), and Heal (2005).
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ever, implies a violation of Strong Pareto or Koopmans’s (1960) Stationarity axiom, two often
combined conditions in intertemporal contexts.8 The Compensation Principle addresses an
aspect of time preference — compensating for postponements — in a way that is not in con-
flict with these conditions.

A characterization. Theorem 1 shows that Strong Pareto, the Compensation Principle, and
Additivity (a standard translation invariance axiom) characterize limit-discounted utilitarian-
ism on the set of pairs of utility streams with a summable or eventually periodic difference.

Basic properties. Theorem 2 shows that limit-discounted utilitarianism satisfies standard
assumptions on efficiency, equity, and interpersonal comparability. It also has a continuity
property relating preferences over infinite streams with long, finite-horizon truncations. This
continuity requirement is a less demanding version of a similar requirement in Brock’s (1970)
classical characterization of the overtaking criterion. Moreover, it satisfies the intuitive utilitar-
ian requirement that summable streams with a larger sum are strictly preferred to those with a
smaller sum; alternatives with equal finite sums are equivalent.

Comparison to other utilitarian criteria. Theorem 3 compares our criterion to overtaking,
catching-up, and the Basu-Mitra criterion. Briefly: if u is weakly preferred to v according to any
of these three criteria, then the same is true for limit-discounted utilitarianism. For the Basu-
Mitra criterion, the implication holds for strict preference as well. Moreover, Table 1 summa-
rizes similarities and differences at an axiomatic level. Throughout the paper we also indicate
well-behaved pairs of streams that can be compared using limit-discounted utilitarianism, but
not always under any of these other criteria; these include streams and their compensated
postponements and pairs of streams whose difference is eventually periodic. Finally, limit-
discounted utilitarianism is closely related to Abel’s summation method from the theory of
divergent series and our generalization of the classical theorem of Frobenius (1880) in Lemma
1 provides sufficient conditions for streams to be comparable using our criterion.

2. LIMIT-DISCOUNTED UTILITARIANISM

The purpose of this section is threefold. We define limit-discounted utilitarianism in (1). The-
orem 1 characterizes its behavior on a domain that is sufficiently large to include the most
commonly discussed examples, and Theorem 2 shows that it satisfies standard desiderata on,
for instance, efficiency, equity, and interpersonal comparability.

The following notation will be used: N= {1, 2, 3, . . .} is the set of positive integers, R the set
of real numbers,

U = {u ∈RN : sup
t∈N
|u t |<+∞}

the set of bounded utility streams u = (u 1, u 2, . . .), where u t denotes the welfare level of gener-
ation t ∈N. A social welfare relation (SWR) is a reflexive and transitive binary relation ¥ onU .
For u , v ∈ U , u ¥ v means that society considers u to be at least as good as v , u ∼ v means
that u ¥ v and v ¥ u , whereas u ≻ v means that u ¥ v but not v ¥ u .

Limit-discounted utilitarianism compares streams u ∈U using their discounted sum

σδ(u ) =

∞
∑

t=1

δt−1u t ,

8If a SWR satisfies Strong Pareto and Stationarity, u = (1, 0, 1, 0, . . .) and v = (0, 1, 0, 1, . . .) are incomparable or u is
strictly preferred to v . If, to the contrary, (0, 1, 0, 1, . . .) is at least as good as (1, 0, 1, 0, . . .), then Stationarity — append-
ing an identical first coordinate — implies that (1, 0, 1, 0, 1, . . .) is at least as good as (1, 1, 0, 1, 0, . . .). By transitivity,
(0, 1, 0, 1, . . .) is at least as good as (1, 1, 0, 1, 0, . . .). But that contradicts Strong Pareto. For results along these lines, see
Dutta (2008), Asheim et al. (2010), and Asheim and Banerjee (2010).
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but lets the discount factorδ ∈ (0, 1) tend to one to give equal weight to each pair of generations.
Formally:9

DEFINITION 1. Limit-discounted utilitarianism (LDU) is the binary relation¥LDU defined, for all
u , v ∈U , by

u ¥LDU v ⇐⇒ lim inf
δ→1−

σδ(u − v )≥ 0. (1)

In the literature on divergent series, the lower limit in (1) is called the lower Abel sum and
the limit limδ→1−σδ(u − v ), if it exists, is called the Abel-sum of the series

∑∞

t=1(u t − vt ).
Theorem 2 will show that LDU is a social welfare relation and will summarize many of its

properties. But we start with a characterization result: motivated by the frequent occurrence
of summable or eventually periodic streams10 in the discussion of utilitarian criteria, we show
that three properties of LDU characterize its behavior on the set of streams

D = {(u , v )∈U ×U : u − v is summable or eventually periodic}.

The first two properties are traditional assumptions on Pareto improvements and interpersonal
comparison of utility. For u , v ∈ U , write u > v if u 6= v and u t ≥ vt for all generations t . We
define:

Strong Pareto (SP): For all u , v ∈U , if u > v , then u ≻ v .

Additivity (Add): For all u , v,α∈U , if u ¥ v , then u +α¥ v +α.

Several authors use axioms on interpersonal comparison of utility that are weaker than Addi-
tivity.11 But u − v = (u +α)− (v +α) for all u , v,α ∈ U , so Additivity holds if weak preference
depends only on the difference between streams. This is the case for all SWRs in this paper.

For u ∈ U and c ∈ R, call (c , u ) ≡ (c , u 1, u 2, u 3, . . .) the (compensated) postponement of
u with compensation c .12 Our third property says that if u has a well-defined average ū ≡

limn→∞
1
n

∑n

t=1 u t , then this average is a reasonable compensation for a postponement of u :13

Compensation Principle (CP): For all u ∈U with a well-defined average ū , u ∼ (ū , u ).

Why does it use the average as compensation, and not some other number? We motivate this
in more detail later in this section: assuming some common axioms, we will argue that — on
a fairly large set of streams u — the only compensated postponement (c , u ) that is equivalent
with u uses the average c = ū as compensation level. But first, let us observe that these three
properties of LDU characterize the order of streams in the domain D. All proofs are in the
appendix.

THEOREM 1. Every social welfare relation that satisfies Strong Pareto, Additivity, and the Com-

pensation Principle coincides with ¥LDU onD.

9Recall: given f : (0, 1)→R, lim infx→1− f (x ) = limǫ→0+ inf{ f (x ) : x ∈ (1− ǫ, 1)}= sup0<ǫ<1 inf{ f (x ) : x ∈ (1− ǫ, 1)}.
10Stream u ∈ U is summable if the series

∑∞

t=1 u t converges, and eventually periodic (with period p ) if there are
k , p ∈ N with u t+p = u t for all integers t ≥ k ; if we can take k = 1, u is periodic. We show later that each pair
(u , v )∈D can be can be compared using LDU; that is, either u ¥LDU v or v ¥LDU u .

11These include the Partial Unit Comparability axiom in Basu and Mitra (2007) and Partial and Finite Translation
Scale Invariance axiom in Asheim (2010) and Asheim et al. (2010), respectively.

12Koopmans et al. (1964) refer to (c , u ) as the postponement of u with “insertion” c .
13The Compensation Principle can be interpreted in terms of the loss to society due to a compensated postpone-

ment. This can be made precise using Abel summation. To elaborate, if u ∈ U has a well-defined average and
v = (c , u ) for some compensation c , the partial sum sn of the first n ∈N terms of u − v equals u n − c . So the partial
sums have average s̄ = ū − c . By the Abelian theorem of Frobenius (1880), also the Abel sum limδ→1− σδ(u − v )

equals ū − c . So in terms of Abel summation, postponing u with compensation c = 0 incurs a loss of ū . For exam-
ple, postponing u = (1, 1, 1, . . .) incurs a loss of ū = 1 and postponing u ′ = (1, 0, 1, 0, . . .) implies a loss of ū ′ = 1/2. We
thank Faruk Gul for this observation.
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We sketch the proof of Theorem 1. LDU is a SWR satisfying the three axioms (see Theorem
2), so it suffices to show that they uniquely determine the order of any pair of streams (u , v )∈D.
A key step is that for all u , v ∈U , the sequence s = (s1, s2, . . .) of partial sums sn =

∑n

t=1(u t −vt )

of u − v satisfies u − v = s − (0, s ). So if s is bounded and has a well-defined average s̄ , the
Compensation Principle says that s ∼ (s̄ , s ). Additivity and Strong Pareto then give

u ¥ v ⇐⇒ s ¥ (0, s ) ⇐⇒ (s̄ , s )¥ (0, s ) ⇐⇒ s̄ ≥ 0. (2)

This addresses the easier cases of the theorem. For instance, if (u , v ) in D has a summable
difference u −v , its partial sums are bounded and have average s̄ =

∑∞

t=1(u t −vt ). Substitution
in (2) leads to an intuitive utilitarian property:

Total Utility property (TU): For all u , v ∈U , if u −v is summable, then u ¥ v if and only
if
∑∞

t=1(u t − vt )≥ 0.

But what if u − v is eventually periodic? If its average is zero, then also its sequence s of partial
sums is eventually periodic: it has a well-defined average s̄ and (2) shows that its sign deter-
mines how u and v are ordered. If the average of u − v is not zero, a monotonicity argument
can be used to translate it to the zero-average case. We illustrate with a simple example.

Suppose u −v is a periodic stream (a ,b , a ,b , . . .) for distinct numbers a and b . If its average
(a +b )/2 is zero, then the partial sum sn =

∑n

t=1(u t − vt ) equals a for odd n and 0 for even n :
the partial sums have average s̄ = a/2. By (2), u and v are comparable and u ¥ v if and only if
s̄ ≥ 0.

And if its average (a +b )/2 is not zero, a monotonicity argument makes it possible to use
the conclusions from the zero-average case. For instance, if the average is positive, then at
least one of a and b , say a , is positive. Define u ′ = u − (0, a +b , 0, a +b , . . .) to obtain u ′− v =

(a ,−a , a ,−a , . . .). This periodic stream has average 0 and its partial sums have average a/2> 0,
so by the previous case u ′ and v are comparable: u ′ ≻ v , since a > 0. Since u > u ′, Strong
Pareto gives u ≻ u ′ ≻ v , i.e., u ≻ v : again, our axioms uniquely determine the order between u

and v .
We now return to the question why it makes sense to use the average of a stream in our

Compensation Principle. To prepare for a more elaborate overview of the properties of LDU
in Theorem 2 and to gain a better understanding of our Compensation Principle, we discuss
further axioms to explain that for well-behaved streams u , equivalence (c , u ) ∼ u can only
hold if c is the average ū of u . Anonymity is an equity assumption saying that preferences are
unaffected by switching the utility level of any two generations:

Anonymity (Ano): For all u , v ∈U , if there are generations s , t ∈N with u s = vt , u t = vs ,
and u i = vi for all other generations i ∈N, then u ∼ v .

Stationarity is Koopmans’s (1960) familiar condition for dynamic consistency: preferences are
independent of the first generation if this generation receives the same utility in the social
states defined by u and v :14

Stationarity (Stat): For all u , v ∈U and c ∈R, u ¥ v if and only if (c , u )¥ (c , v ).

If a social welfare relation satisfies Strong Pareto, Additivity, Anonymity, and Stationarity, and
a stream u ∈U is eventually periodic, then (c , u )∼ u implies that c = ū . Look, for instance, at
the periodic stream u = (a ,b , a ,b , . . .)with a ,b ∈R. If (c , u )∼ u , then Stationarity gives

(c , c , a ,b , a ,b , . . .)∼ (c , a ,b , a ,b , . . .)∼ (a ,b , a ,b , . . .).

14Also Asheim et al. (2010) stress the relevance of Stationarity for intergenerational utilitarianism. They motivate
their utilitarian extension of Basu and Mitra’s relation (4) by the desirability of retaining Stationarity.
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Subtracting u = (a ,b , a ,b , . . .) from the first and third term and using Additivity gives

(c −a , c −b , 0, 0, . . .)∼ (0, 0, 0, 0, . . .). (3)

Now, Strong Pareto, Additivity, and Anonymity imply15 that for all u , v ∈U differing in at most
finitely many coordinates: u ¥ v if and only if their difference u −v has a nonnegative sum. So
(3) is equivalent with (c −a )+ (c −b ) = 0, i.e., c = (a +b )/2, the average of u = (a ,b , a ,b , . . .).

The insight that (c , u )∼ u implies that c = ū extends to many other streams u , including all
convergent and consequently all summable streams, under a mild continuity assumption. We
defer technical details to Proposition 1 in Appendix A.1. This continuity assumption captures
the idea from Brock’s (1970, p. 929) characterization of the overtaking criterion that “decisions
on infinite programs are consistent with decisions on finite programs of length n if n is large
enough”;16 for u ∈U and n ∈N, write u [n ] = (u 1, u 2, . . . , u n , 0, 0, . . .):

Continuity (Cont): For all u , v ∈ U , if there is an N ∈ N with u [n ] ≻ v[n ] for all n ≥ N ,
then u ¥ v .

Up to now, we characterized LDU on the domainD using Strong Pareto, Additivity, and the
Compensation Principle. Moreover, we introduced other axioms to support why this principle
uses the average as a compensation for a postponement. So this seems the right time to stress
that LDU is a social welfare relation satisfying all these properties:

THEOREM 2. Limit-discounted utilitarianism defines a social welfare relation. It satisfies Strong

Pareto, Additivity, the Compensation Principle, the Total Utility property, Anonymity, Stationar-

ity, and Continuity.

With the properties in this theorem, it is easier to compare limit-discounted utilitarianism
to other utilitarian criteria. That is the topic of our next section.

3. COMPARISON TO OTHER UTILITARIAN CRITERIA

In this section, we compare limit-discounted utilitarianism to three other utilitarian social wel-
fare relations: the criterion ¥BM of Basu and Mitra (2007) where

u ¥BM v ⇐⇒ there is a T0 ∈Nwith
T0
∑

t=1

(u t − vt )≥ 0 (4)

and u t − vt ≥ 0 for all t ≥ T0,

the overtaking criterion ¥W of von Weizsäcker (1965) where

u ¥W v ⇐⇒ there is a T0 ∈Nwith
T
∑

t=1

(u t − vt )≥ 0 for all T ≥ T0, (5)

15 See Basu and Mitra (2007, Lemma 1) or Jonsson and Voorneveld (2015, Lemma 1).
16Continuity is called “horizon consistency” in Jonsson and Voorneveld (2015, p. 23). It is less demanding than

Brock’s third axiom and the “weak consistency” axiom in Basu and Mitra (2007, p. 359): it allows weak preference
rather than demanding that u ≻ v hold if u [n ] ≻ v[n ] for large n . Our convention of setting the welfare of generations
t > n in u [n ] equal to zero follows their papers, but by Additivity, any other constant would do: what matters is
that generations t > n receive equal welfare in u [n ] and v[n ]. For instance, if Additivity is satisfied, then Continuity
is equivalent with a relaxation of “weak preference continuity” in Asheim and Tungodden (2004, p. 223): for all
u , v ∈U , if there is an N ∈Nwith (u 1, . . . , u n , vn+1, vn+2, . . .)≻ v for all n ≥N , then u ¥ v .
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and the catching-up criterion ¥G of Gale (1967) where

u ¥G v ⇐⇒ lim inf
T→∞

T
∑

t=1

(u t − vt )≥ 0, (6)

for all u , v ∈ U .17 Relations and differences between the criteria are discussed along two di-
mensions: what properties of LDU from the previous section do the other criteria satisfy? And
to what extent do preferences according to LDU agree with those of the other criteria?

We summarize some relations before going into details. Properties of LDU were established
in Theorem 2 and those of the other criteria are well-known from earlier literature or straight-
forward to verify; we collect them in Table 1 and will illustrate violations of axioms by means
of examples. In Theorem 3 we show that if a stream u is weakly preferred to v according to
any of the other three criteria, then the same is true for limit-discounted utilitarianism. For the
Basu-Mitra criterion, the implication holds for strict preference as well.

SP Add CP Ano Stat Cont TU

LDU ¥LDU + + + + + + +

Basu-Mitra ¥BM + + − + + − −

overtaking ¥W + + − + + + −

catching-up ¥G + + − + + + +

Table 1: Social welfare relations and properties they do (+) or do not (−) satisfy.

We now consider a few concrete cases, starting with two examples where the overtaking
criterion ¥W and the catching-up criterion ¥G have been criticized.18

EXAMPLE 1. Let u ∈ U be a summable stream with strictly positive entries and let v = (0, u ).
Then
∑T

t=1(u t − vt ) = u T > 0 for all T ≥ 1. So u is strictly preferred to v = (0, u ) under the
overtaking criterion. Since the two streams have the same sum, overtaking does not satisfy the
Total Utility property. Nor does the Basu-Mitra criterion, which cannot compare u and v .19

LDU and catching-up do satisfy the Total Utility property: they find u and (0, u ) equivalent.

The following example shows that the Compensation Principle and Strong Pareto allow us
to compare streams that have appeared frequently in the literature, but which are not compa-
rable using overtaking, catching-up, or the Basu-Mitra criterion.

EXAMPLE 2. Consider the periodic stream u = (1, 0, 1, 0, . . .) and let v = (c , u ) for some real num-
ber c . Then

T
∑

t=1

(u t − vt ) =−

T
∑

t=1

(vt −u t ) =

(

−c +1 if T is odd,

−c if T is even.

So u and v are not comparable with the overtaking criterion or the catching-up criterion if c ∈

(0, 1). Both criteria rank u above v if c ≤ 0. In particular, they prefer (1, 0, 1, 0, . . .) to (0, 1, 0, 1, . . .).

17Our definitions of the overtaking and catching-up criterion follow Gale (1967).
18Basu and Mitra (2007, p. 361) consider a version of Example 1. Versions of Example 2 have been discussed by,

among others, Lauwers (1995, p. 348), Lauwers (1997, p. 225), Fleurbaey and Michel (2003, p. 783), Asheim and
Tungodden (2004, p. 229), Heal (2005, p. 1115), Banerjee (2006, p. 333), Basu and Mitra (2007, p. 360), Dutta (2008,
Sec. IV), Asheim et al. (2010, p. 520), and Asheim and Banerjee (2010, p. 164).

19Since
∑∞

t=1 u t =
∑∞

t=1 vt and
∑T

t=1(u t − vt ) > 0 for every T , there is no T0 with u t ≥ vt for all t ≥ T0. Therefore,
u ¥BM v does not hold. Likewise, v ¥BM u does not hold. This also shows that ¥BM violates Continuity: u [n ] ≻BM v[n ]
for all n , but u and v are not comparable.
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Basu and Mitra’s criterion does not compare u = (1, 0, 1, 0, . . . ) and v = (c , u ) for any c , since
u−v = (1−c ,−1, 1,−1, . . .). So none of these three criteria satisfies the Compensation Principle,
which requires that u ∼ (c , u ) for c = 1/2. LDU compares u and v for all c . Indeed, for δ ∈ (0, 1),

∞
∑

t=1

δt−1(u t − vt ) =

∞
∑

t=1

(−δ)t−1− c =
1

1+δ
− c .

Letting δ go to one, the Abel sum of
∑∞

t=1(u t − vt ) is 1/2− c . This means that u ∼LDU v if
c = 1/2, u ≻LDU v if c < 1/2, and v ≻LDU u if c > 1/2. This can also be seen from the axioms: the
Compensation Principle says that u ∼LDU v if c = 1/2; the strict preferences for other c follow
from the Strong Pareto axiom.

The next example contains a pair of streams over which catching-up has a strict preference,
but LDU is indifferent; Example 1 gave a corresponding result for overtaking.

EXAMPLE 3. Define u ∈U by setting u t = 1 if t = 2n for some n ∈N and u t = 0 otherwise. Then
u −(0, u ) = (u 1, u 2−u 1, u 3−u 2, . . .) has partial sums sn = u n , which means that u ≻G (0, u ). But
since ū = 0, the Compensation Principle implies that u ∼LDU (0, u ).

Our next theorem states the relations between LDU, overtaking, catching up, and the Basu-
Mitra criterion. Given two SWRs ¥A and ¥B on U , say that ¥B weakly extends ¥A if for all
u , v ∈U , u ¥A v implies u ¥B v . If, in addition, for all u , v ∈U , u ≻A v implies u ≻B v , we say
that ¥B extends ¥A .

THEOREM 3. The following relations hold between the LDU criterion ¥LDU, the Basu-Mitra crite-

rion ¥BM, overtaking ¥W, and catching-up ¥G:

(i) ¥LDU extends ¥BM.

(ii) ¥LDU weakly extends ¥G and ¥G weakly extends ¥W.

(iii) ¥LDU does not extend ¥W: there are u , v ∈U with u ≻W v and u ∼LDU v .

(iv) ¥LDU does not extend ¥G: there are u , v ∈U with u ≻G v and u ∼LDU v .

Throughout the paper we also indicated well-behaved pairs of streams that can be com-
pared using limit-discounted utilitarianism, but not under any of these other criteria: the proof
of Theorem 1 and Example 2 use the Compensation Principle to illustrate that all pairs of
streams in D — those whose difference is summable or eventually periodic — are comparable
using our criterion. A fortiori, many of our results about streams that can be compared under
LDU use a generalization of the theorem of Frobenius (1880), connecting the limit behavior
of the discounted sum and the averages of the partial sums. In the terminology of summabil-
ity criteria, it connects Abel- and Cesàro-summability. For a real sequence a = (a 1, a 2, . . .) and
n ∈N, let sn =
∑n

t=1 a t be the partial sum of its first n terms and denote their average by

Cn (a ) =
s1+ s2+ · · ·+ sn

n
. (7)

If these averages converge, a is Cesàro-summable to s̄ = limn→∞Cn (a ). More generally:20

20The inequalities in Lemma 1 are well-known in the literature on stochastic games; see Lippman (1969), Sennott
(1999), and Bishop et al. (2014). These references do not contain a proof of the result in the generality that we stated
it. Our proof in the appendix is a slightly rewritten version of one suggested by an anonymous referee.

The paper of Bishop et al. (2014) contains interesting examples illustrating when these inequalities may be strict
and shows that such scenarios can occur in practical applications like Markov Decision Processes.
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LEMMA 1. For each a = (a 1, a 2, . . .)∈U ,

lim inf
n→∞

Cn (a )≤ lim inf
δ→1−

σδ(a )≤ lim sup
δ→1−

σδ(a )≤ lim sup
n→∞

Cn (a ). (8)

In particular, for u , v ∈U , if the partial sums sn =
∑n

t=1(u t − vt ) of u − v satisfy

lim inf
n→∞

s1+ · · ·+ sn

n
≥ 0,

then u ¥LDU v . We conclude with an example of streams that limit-discounted utilitarianism
cannot compare.

EXAMPLE 4 (Bishop et al., 2014, Example 2). Define a = (a 1, a 2, . . . )∈U by

a t =

(

0 if k !≤ t < 2k ! for some k ∈N,

1 otherwise.

We have (Bishop et al., 2014, Proposition 2):

lim inf
n→∞

1

n

n
∑

t=1

a t = 1/2< lim inf
δ→1−

(1−δ)σδ(a ) = 3/4 (9)

and

lim sup
n→∞

1

n

n
∑

t=1

a t = lim sup
δ→1−

(1−δ)σδ(a ) = 1. (10)

If we take u = a − (0, a ), then the partial sums of u equal sn =
∑n

t=1 u t = a n , n ≥ 1. Moreover,
summation by parts gives thatσδ(u ) = (1−δ)σδ(a ). By (9) and (10),

lim inf
n→∞

Cn (u ) = 1/2< lim inf
δ→1−

σδ(u ) = 3/4 and lim sup
n→∞

Cn (u ) = lim sup
δ→1−

σδ(u ) = 1.

Consequently, u and v = (r, 0, 0, . . . ) are not ¥LDU-comparable if r ∈ (3/4, 1).

A. APPENDIX

This appendix contains all proofs. They are in a different order than in the text: Proposition 1
in A.1 gives axiomatic support for using the average in our Compensation Principle. A.2 to A.5
contain proofs of Lemma 1 and Theorems 2, 1, and 3, respectively. In the proofs, we refer to
axioms using their abbreviations from Section 2.

A.1 Motivating the average in the Compensation Principle

We will argue that if a stream u on average gives each generation a utility of ū , then c = ū is
a reasonable compensation in a compensated postponement (c , u ) of u : using some of our
earlier axioms, Proposition 1 shows — on a fairly large set of well-behaved streams — that
(c , u ) ∼ u can only hold if c = ū . Informally, we will say that a stream u ∈ U has a regular
average if (i) its average ū is well-defined and (ii) the average over sufficiently long, but finite
segments of consecutive coordinates remains close to ū . Formally, u ∈U has a regular average

9



if ū is well-defined and for every ǫ > 0 there is an N ∈ N such that the average of u over any
segment of n ≥N consecutive coordinates differs from ū by at most ǫ:

�

�

�

�

�

1

n

t0+n
∑

t=t0+1

u t − ū

�

�

�

�

�

< ǫ for all t0 ∈N and n ≥N .

For instance, the set of streams with a regular average contains all streams that are eventually
periodic, summable, or convergent.21

PROPOSITION 1. Let ¥ be a SWR on U that satisfies Strong Pareto, Anonymity, Additivity, and

Stationarity. If u ∈U is eventually periodic and c ∈R, then

(i) (c , u )¥ u implies c ≥ ū .

(ii) u ¥ (c , u ) implies c ≤ ū .

(iii) (c , u )∼ u implies c = ū .

If the SWR also satisfies Continuity, these implications hold for all u ∈U with a regular average.

PROOF. Recall from footnote 15 that SP, Ano, and Add imply that for all u , v ∈ U where u − v

has only finitely many nonzero entries:

u ¥ v ⇐⇒

∞
∑

t=1

(u t − vt )≥ 0. (11)

Assume that SWR¥ onU satisfies SP, Ano, Add, and Stat. Let u ∈U be eventually periodic and
let c ∈R. To prove (i), assume that (c , u )¥ u . Since u is eventually periodic, there are k , p ∈N

with u t+p = u t for t ≥ k . If p = 1, then u = (u 1, . . . , u k , u k , u k , . . .) is eventually constant, so
(c , u )− u has a finite number of nonzero entries that sum to c − u k . Since SP, Ano, and Add
are satisfied, (11) implies that c ≥ u k = ū . If p ≥ 2, we have (c , c , u ) ¥ (c , u ) ¥ u by Stat and
(c , c , u )¥ u by transitivity. Iterating (if p > 2) gives (c p , u )¥ u , where c p is a short-cut notation
for p consecutive coordinates equal to c . Since u t = (c p , u )t for all t > k + p , the difference

(c p , u )− u has finitely many nonzero entries and sum p c −
∑k+p

t=k+1 u t . By (11), (c p , u ) ¥ u

implies that that this sum is nonnegative: c ≥
∑k+p

t=k+1 u t /p = ū .
(ii): By Add, u ¥ (c , u ) implies (−c ,−u )¥−u , which by (i) implies −c ≥−ū , so that c ≤ ū .
(iii): This follows from (i) and (ii).

Now add axiom Cont. We prove implication (i) for streams with a regular average; (ii) and
(iii) follow as above. So let u ∈U and c ∈R be such that u has regular average ū and (c , u )¥ u .
By Stat and transitivity, (c N , u )¥ u for all N ∈N. To prove that c ≥ ū , suppose, to the contrary,
that c < ū . We obtain a contradiction by showing that u ≻ (c N , u ) for some N ∈N.

If c < ū , there are b ∈Rwith c <b < ū and N ∈N such that the average of u over any n ≥N

consecutive generations differs from ū by at most ǫ ≡ (ū −b )/2. Let d = u − (b N , u ). For n >N :

n
∑

t=1

d t = u n +u n−1+ · · ·+u n−N+1−N b

=N ((u n +u n−1+ · · ·+u n−N+1)/N −b )

≥N (ū − ǫ−b )

=Nǫ.

21A stream with an average that is not regular is u = (0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, . . .), consisting of a zero followed by
a one, then two zeros followed by two ones, three zeros followed by three ones, etc. Its average is 1/2. But it does
not have a regular average: for every n , the stream contains infinitely many segments of n consecutive zeros (and n

consecutive ones).
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Since d [n ] has finitely many nonzero entries and positive sum, (11) implies that d [n ] ≻ (0, 0, 0, . . .)
for all n > N . By Cont, we have d ¥ (0, 0, 0, . . .). Hence u ¥ (b N , u ) by Add. By SP and b > c :
u ≻ (c N , u ), which is our contradiction.

A.2 Proof of Lemma 1

We prove Lemma 1 slightly more generally, for all real sequences a = (a 1, a 2, . . .) whose dis-
counted sum σδ(a ) is well-defined for each δ ∈ (0, 1). Let sn =

∑n

t=1 a t , n ∈ N. In (8), note
that all upper/lower limits are well-defined in R ∪ {−∞,+∞} and that the second inequality
holds: all infima and suprema are taken over nonempty sets. The first inequality in (8) implies
the third using a sign change: lim supδ→1−σδ(a ) = − lim infδ→1−σδ(−a ), lim supn→∞Cn (a ) =

− lim infn→∞Cn (−a ). So it suffices to prove the first inequality:

lim inf
n→∞

Cn (a )≤ lim inf
δ→1−

σδ(a ).

Summation by parts, first for the sequence a and then for its partial sums, gives

∞
∑

n=1

δn−1a n = a 1+

∞
∑

n=2

δn−1(sn − sn−1)

= (1−δ)
∞
∑

n=1

δn−1sn

= (1−δ)2
∞
∑

n=1

δn−1(s1+ · · ·+ sn ).

So, recalling from (7) that Cn (a ) = (s1+ · · ·+ sn )/n , the discounted sum equals

σδ(a ) =

∞
∑

n=1

δn−1a n = (1−δ)
2
∞
∑

n=1

δn−1nCn (a ). (12)

Distinguish three cases. Firstly, if lim infn→∞Cn (a ) =+∞, then (12) and the equality

∞
∑

n=1

nδn−1 =
1

(1−δ)2
(13)

immediately give that also lim infδ→1−σδ(a ) = +∞. Secondly, if lim infn→∞Cn (a ) = −∞, the
inequality lim infn→∞Cn (a )≤ lim infδ→1−σδ(a ) holds trivially, since both lower limits are well-
defined. Finally, suppose that lim infn→∞Cn (a ) is finite. For λ∈R, (12) and (13) give

∞
∑

n=1

δn−1a n −λ= (1−δ
2)

∞
∑

n=1

δn−1n (Cn (a )−λ).

Takeλ= lim infn→∞Cn (a ). By definition ofλ, for each ǫ > 0 there is a T such that Cn (a )−λ≥−ǫ

for all n > T . Then

∞
∑

n=1

δn−1a n −λ≥ (1−δ
2)

T
∑

n=1

δn−1n (Cn (a )−λ)− ǫ(1−δ
2)

∞
∑

n=T+1

δn−1n

≥ (1−δ2)

T
∑

n=1

δn−1n (Cn (a )−λ)− ǫ. (14)

The first term in (14) tends to 0 as δ → 1−, so lim infδ→1−σδ(a )− λ ≥ −ǫ. Since ǫ > 0 was
arbitrary, lim infδ→1−σδ(a )≥λ= lim infn→∞Cn (a ).
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A.3 Proof of Theorem 2

We first show that¥LDU is a social welfare relation. It is reflexive: σδ(u −u ) =σδ(0, 0, . . .) = 0 for
all u ∈ U and δ ∈ (0, 1). It is transitive: let u , v, w ∈ U have u ¥LDU v and v ¥LDU w . For each
δ ∈ (0, 1), the discounted sums satisfy

σδ(u −w ) =σδ(u − v )+σδ(v −w ),

so taking lower limits and using u ¥LDU v and v ¥LDU w gives

lim inf
δ→1−

σδ(u −w )≥ lim inf
δ→1−

σδ(u − v )+ lim inf
δ→1−

σδ(v −w )≥ 0+0= 0,

i.e., u ¥LDU w . We proceed to the axioms:
SP: If u > v , the discounted sum σδ(u − v ) is a positive, increasing function of δ ∈ (0, 1). So
limδ→1−σδ(u − v ) exists in (0,+∞] and limδ→1−σδ(v −u ) = − limδ→1−σδ(u − v ) ∈ [−∞, 0). So
u ≻LDU v .
Add: For all u , v,α∈U , (u +α)− (v +α) = u − v .
CP: Let u ∈ U have a well-defined average ū and let c ∈ R. We show that the discounted sum
of d = u − (c , u ) = (u 1− c , u 2−u 1, u 3−u 2, . . .) satisfies

lim
δ→1−

σδ(u − (c , u )) = ū − c . (15)

By Frobenius’s theorem (cf. Lemma 1), it suffices to show that the series
∑∞

t=1 d t is Cesàro-
summable to ū − c , i.e., that its partial sums sn =

∑n

t=1 d t satisfy

s1+ · · ·+ sn

n
→ ū − c as n→∞.

But that is easy: the partial sum of the first n ∈N terms is sn = u n − c , so

s1+ · · ·+ sn

n
=

u 1+ · · ·+u n

n
− c .

Since ū exists by assumption, the right-hand side tends to ū − c as n →∞. This proves (15). It
follows that (c , u )∼LDU u if c = ū .
TU: If u −v is summable, then

∑∞

t=1(u t −vt ) = limδ→1−σδ(u −v ) by Abel’s theorem; cf. Duren
(2012, p. 76).
Ano: If v ∈ U is obtained from u ∈ U by permuting two coordinates, then

∑∞

t=1(u t − vt ) = 0.
So Ano follows from TU.
Stat: For all u , v ∈U , lim infδ→1−σδ(u −v ) = (u 1−v1)+ lim infδ→1−σδ((u 2, u 3, . . .)− (v2, v3, . . .)).
Cont: Let u , v ∈ U and N ∈ N be such that u [n ] ≻LDU v[n ] for all n ≥ N . Since u [n ] and v[n ] are
summable, sn =

∑n

t=1(u t − vt )> 0 for all n ≥N by TU. By Lemma 1, lim infδ→1−σδ(u − v )≥ 0,
i.e., u ¥LDU v .

A.4 Proof of Theorem 1

We start with a lemma linking Strong Pareto, Additivity, and the Compensation Principle to
summability:

LEMMA 2. Let the SWR ¥ satisfy Strong Pareto, Additivity, and the Compensation Principle. For

u , v ∈U , if the series
∑∞

t=1(u t − vt ) is Cesàro-summable and has bounded partial sums, then

u ¥ v ⇐⇒ lim
n→∞

Cn (u − v )≥ 0. (16)

In particular, ¥ has the Total Utility property.
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PROOF. For u and v as in the lemma, Add gives u ¥ v if and only if u − v ¥ (0, 0, . . .). The
sequence s = (s1, s2, . . .) of partial sums sn =

∑n

t=1(u t − vt ), n ∈ N, is bounded and u − v =

s − (0, s ). So

u ¥ v ⇐⇒ s − (0, s )¥ (0, 0, . . .). (17)

By CP, s ∼ (s̄ , s ), where s̄ = limn→∞Cn (u − v ) by definition (7). By Add, s − (0, s )∼ (s̄ , s )− (0, s ).
Since

(s̄ , s )− (0, s ) = (s̄ , 0, 0, . . .),

equation (17) implies

u ¥ v ⇐⇒ (s̄ , 0, 0, . . .)¥ (0, 0, 0, . . .). (18)

By reflexivity and SP, (s̄ , 0, 0, . . .)¥ (0, 0, 0, . . .) holds if and only if s̄ ≥ 0. With (18), this gives (16).
For TU, if
∑∞

t=1(u t −vt ) is convergent, it is Cesàro-summable to the same sum. That is, s is
bounded (s ∈U ) and s̄ =

∑∞

t=1(u t − vt ). By (16), u ¥ v if and only if
∑∞

t=1(u t − vt )≥ 0.

This leaves us properly equipped for the proof of Theorem 1:

PROOF. Let SWR ¥ satisfy SP, Add, and CP. Let (u , v ) ∈ D. If d ≡ u − v is summable, the Total
Utility property (Theorem 2 for¥LDU, Lemma 2 for¥) implies that u ¥ v if and only if u ¥LDU v .

So assume that d is eventually periodic: there are p , T ∈N with d t+p = d t for all t ≥ T . For
all t ≥ T , we then have d̄ =

∑t+p

i=t+1 d i /p , i.e., p d̄ =
∑t+p

i=t+1 d i .

Case 1: If d̄ = 0, then
∑t+p

i=t+1 d i = 0 for all t ≥ T . Then sn =
∑n

t=1 d t , n ≥ 1, is eventually pe-
riodic, so that s is bounded and s̄ is well-defined. Since both ¥LDU and ¥ satisfy the conditions
of Lemma 2,

u ¥ v ⇐⇒ s̄ ≥ 0 ⇐⇒ u ¥LDU v.

Case 2: If d̄ 6= 0, let’s suppose that d̄ > 0: the argument when d̄ < 0 is similar. If d̄ > 0, the
partial sums sn =

∑n

t=1 d t and hence their averages Cn (d ) =
s1+···+sn

n
diverge to+∞. By Lemma

1, lim infδ→1−
∑∞

t=1δ
t−1d t =+∞, i.e., u ≻LDU v . It remains to verify that also u ≻ v .

Since d = u − v is bounded, there is an M ∈ [0,∞) such that −M ≤ d t ≤ M for all t ∈

N. Then also −M ≤ d̄ ≤ M . Because d̄ > 0 implies sn → +∞, we can choose N ≥ T with
sN ≥ 2p M . We abbreviate k ∈ N consecutive zero coordinates by 0k and define u ′ = u −

(0N , p d̄ , 0p−1, p d̄ , 0p−1, p d̄ , 0p−1, . . .). Since u − v and (0N , p d̄ , 0p−1, p d̄ , 0p−1, p d̄ , 0p−1, . . .) are

eventually periodic with period p and average d̄ , stream u ′− v is eventually periodic with pe-
riod p and average 0. Arguing as in Case 1, its sequence of partial sums s ′n =

∑n

t=1(u
′
t −vt ), n ≥

1, is bounded, i.e., s ′ = (s ′1, s ′2, . . .) ∈ U , and eventually periodic with period p . We claim that
s ′n ≥ 0 for all n > N . By periodicity, it suffices to show that s ′

N+k
≥ 0 for all k = 1, . . . , p . By

construction,

s ′N+k = sN −p d̄ −

k
∑

m=1

(u N+m − vN+m )≥ 2p M −p M −k M ≥ 0.

Since s ′n ≥ 0 for all n >N , s̄ ′ ≥ 0. By CP, s ′ ∼ (s̄ ′, s ′), so s ′ ¥ (0, s ′) by SP. By Add, u ′ ¥ v . By SP,
u ≻ u ′. By transitivity, u ≻ v .
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A.5 Proof of Theorem 3

(i): Since ¥LDU satisfies SP, Ano, and Add, it extends ¥BM; see Basu and Mitra (2007, Theorem 1)
or Jonsson and Voorneveld (2015, Theorem 6).
(ii): By definition,¥G weakly extends¥W. To see that¥LDU extends¥G, let u , v ∈U have u ¥G v :
the partial sums sn =

∑n

t=1(u t − vt ) of u − v satisfy lim infn→∞ sn ≥ 0. Consequently,

lim inf
n→∞

Cn (u − v ) = lim inf
n→∞

s1+ · · ·+ sn

n
≥ 0.

By Lemma 1, also lim infδ→1−σδ(u − v )≥ 0. That is, u ¥LDU v .
Finally, (iii) was illustrated in Example 1, and (iv) in Example 3.
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Supplement to “The limit of discounted utilitarianism”

ADAM JONSSON

Department of Engineering Sciences and Mathematics, Luleå University of Technology

MARK VOORNEVELD

Department of Economics, Stockholm School of Economics

An anonymous referee suggested finding a variant of our characterization (Theorem 1)1 that

does not use the Compensation Principle. This is possible since the Compensation Principle

can be split into two parts: (1) a “critical level” assumption: well-behaved streams u have an

equivalent compensated postponement (c , u ) for some level c and (2) the level c that achieves

this equivalence is the average of u . Proposition 1 of our paper shows how to deduce the latter

from axioms that do not rely on summation. Together with a critical level assumption, they can

replace the Compensation Principle in our characterization:

THEOREM. If SWR ¥ satisfies Strong Pareto, Additivity, Anonymity, Stationarity, Continuity, and

for all convergent or eventually periodic u ∈U there is a c ∈Rwith u ∼ (c , u ), (1)

then ¥ and ¥LDU coincide onD.

PROOF. The proof requires only minor adjustments from that of Theorem 1. Let the SWR ¥ sat-

isfy SP, Add, Ano, Stat, Cont, and (1). Let (u , v )∈D.

If u − v is summable, its sequence s = (s1, s2, . . .) of partial sums converges. This means that

s is bounded and its average s̄ =
∑
∞

t=1(u t − vt ) is regular. By (1), there is a c ∈ R with s ∼ (c , s ).

Proposition 1 gives c = s̄ , so that s ∼ (s̄ , s ). By Add, s − (0, s )∼ (s̄ , 0, 0, . . .). Thus

u ¥ v ⇐⇒ u − v ¥ (0, 0, . . .) (by Add)

⇐⇒ s − (0, s )¥ (0, 0, . . .) (since u − v = s − (0, s ))

⇐⇒ (s̄ , 0, 0, . . .)¥ (0, 0, . . .) (since s − (0, s )∼ (s̄ , 0, 0, . . .))

⇐⇒ s̄ ≥ 0 (by SP and reflexivity)

⇐⇒
∑
∞

t=1(u t − vt )≥ 0 (since s̄ =
∑
∞

t=1(u t − vt ))

⇐⇒ u ¥LDU v (since ¥LDU satisfies TU)

If u −v is eventually periodic, the corresponding part of the proof of Theorem 1 carries over

almost verbatim. In Case 1, the sequence s of partial sums is eventually periodic, so s is bounded

and its average s̄ = limn→∞Cn (u − v ) is well-defined. By Lemma 2, u ¥LDU v if and only if s̄ ≥ 0.

And arguing as above:

u ¥ v ⇐⇒ (s̄ , 0, 0, . . .)¥ (0, 0, . . .) ⇐⇒ s̄ ≥ 0.

So u ¥ v if and only if u ¥LDU v . Case 2 is unchanged, except the sentence “By CP . . . ”: instead of

using CP, we apply the reasoning of Case 1 to s ′ to show that s ′ ∼ (s̄ ′, s ′).
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1The social welfare relation that ranks u ¥ v whenever lim infn→∞Cn (u − v )≥ 0, sometimes called Veinott’s crite-

rion, coincides with ¥LDU onD and can consequently be characterized the same way.


