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Some definitions and terminology

Assume that {Xt} satisfies the pth-order difference quation

Xt − ζ1Xt−1 − · · · − ζpXt−p = ǫt

where ǫt
i .i .d .
∼ WN(0, σ2)

Provided that ζ(z) = 1− ζ1z − · · · − ζpz
p has no roots on the unit

circle (ζ(z) 6= 0 for |z | = 1), a unique stationary solution to the
difference equation exisits
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Some defintions and terminology

This solution is said to be causal if ζ(z) has no roots inside the unit
circle (ζ(z) 6= 0 for |z | ≤ 1), and we have that Xt = f (ǫt , ǫt−1, ...)

On the other hand, the solution is said to be noncausal if ζ(z) has
any root inside the unit circle

And, the solution is siad to be purely noncausal if ζ(z) has all the
roots inside the unit circle (ζ(z) 6= 0 for |z | ≥ 1), and we have that
Xt = f (ǫt+1, ǫt+2, ...)
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Some defintions and terminology

To handle the mixed case it is convenient to factor the auturegressive
polynomial as

ζ(z) = 1− ζ1z − · · · − ζpz
p = ζ†(z)ζ∗(z)

where

ζ†(z) = 1− φ1z − · · · − φrz
r 6= 0 for |z | ≤ 1

ζ∗(z) = 1− ϕ1z − · · · − ϕsz
s 6= 0 for |z | ≥ 1

and r , s ≥ 0 with r + s = p
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The stationary NCAR model

This suggets that we may define a stationary NCAR(r , s) model
(Lanne and Saikkonen, 2011) as

φ(B)ϕ(B−1)Xt = ǫt , t = 1, 2, ... (1)

where
φ(B) = 1− φ1B − · · · − φrB

r

and
ϕ(B−1) = 1− ϕ1B

−1 − · · · − ϕsB
−s

with φi 6= 0 for some i ∈ {1, ..., r} and ϕj 6= 0 for some j ∈ {1, ..., s},
B is the usual backward shift operator, and ǫt is an error term
(properties discussed later on)
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The stationary NCAR model

Example: the NCAR(1, 1) model

Xt︸︷︷︸
current value

(1 + φ1ϕ1)− φ1 Xt−1︸︷︷︸
past value

− ϕ1 Xt+1︸︷︷︸
future value

= ǫt
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The stationary NCAR model

The NCAR model in (1) is said to be purely noncausal if
φ1 = · · · = φr = 0

On the other hand, the NCAR model in (1) reduces to the
conventional casual autoregression when ϕ1 = · · · = ϕs = 0

Assuming that φ(z) and ϕ(z) (z ∈ C) have their roots outside the
unit circle the NCAR model in (1) has a stationary solution

Xt = f (..., ǫt−1, ǫt , ǫt+1, ...) =
∞∑

j=−∞

ψjǫt−j

i.e. two-sided moving average representation
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The stationary NCAR model

A backward-looking moving average representation: define

ut
def
= ϕ(B−1)Xt which implies that we can write (1) as

ut =
∞∑

j=0

αjǫt−j

A forward-looking moving average representation: define

vt
def
= φ(B)Xt which yields that we can write (1) as

vt =
∞∑

j=0

βjǫt+j
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Applications of the stationary NCAR model

The use of the NACR model in practice can be motivated by...

According to the theory on present value models and rational
expectations (say) future values also effect the current value

For instance, Lanne and Saikkonen (2011) find that the (high)
persistence previously found in US inflation is not caused by
dependence on past inflation but on the expectations on future
inflation

That is, they find rather strong support for that US inflation series
has a purely forward-looking behavior (i.e. New Keynesian modeling)
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Applications of the NCAR model

On may also think of this is that the error term (ǫt) in an
autoregressive model should not be predictable by the past of the
series (E (ǫt |yt−1, yt−2, ...) = 0))

However, if relevant variables are omitted their impact goes (at least
partly) to the error term of the model and, as the considered time
series may help to predict the omitted variables, the assumed
unpredictability condition may break down

As economic variables are typically interrelated, this point appears
particularly pertinent in economic applications

So, the NCAR model may provide a viable alternative, for it explicitly
allows for the predictability of the error term by the past of the
considered series
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Applications of the NCAR model

Confined to natural sciences and engineering, NCAR type of models
have been studied by Breidt et al. (1991), Lii and Rosenblatt (1996),
Huang and Pawitan (2000), Breidt et al. (2001), and Andrews (2006)

NCAR models have more recently been applied to economic time
series Lanne and Saikkonen (2011), and further studied by Lanne et
al. (2012a), Lanne et al. (2012b), Lanne et al. (2012c), Lanne and
Saikkonen (2013), and Gourieroux and Zakoian (2013)

In these more recent papers it is demonstrated that noncausal models
many times perform better (both in an in sample and out of sample
context) then the causal models
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A nonstationary NCAR model

Lanne and Saikkonen (2011) consider specification, estimation and
hypothesis testing, using methods of ML, in the stationary NCAR
model

They show that estimators of the NCAR parameters follow standard
distributions

In this work, a ML based unit root test is derived in the NCAR model
such that the stationarity assumption in above articles (more or less)
can be tested

It is noticed that we expect traditional unit root tests (DF type of
tests) not to be so powerful in the presence of a forward-looking
component (they are simply based on a misspecified model
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A nonstationary NCAR model

To derive a unit root test we first define a unit root NCAR model.
Hence, assume that r > 0 and proceed by writing

φ(B) = ∆− φB − π1∆B − · · · − πr−1∆B r−1 (2)

where ∆ = 1− B is the difference operator

Using (2) implies that the NCAR model in (1) can be written as

∆Xt = φXt−1 + π1∆yt−1 + · · ·+ πr−1∆Xt−r+1 + vt , t = 1, 2, ...

where vt is defined as above

Remark: this looks like an ADF-type of regression, but the error term
is fundamentally different...
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A nonstationary NCAR model

It is also assumed that (no more than a single unit root):

π(z) 6= 0 for |z | ≤ 1 and ϕ(z) 6= 0 for |z | ≤ 1

A nonstationary NCAR model may now be defined by letting φ = 0 in
(2), and entails

∆Xt =
∞∑

j=−∞

ψjǫt−j

This implies that ∆Xt is a stationary and ergodic process with finite
second moments
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A nonstationary NCAR model

Therefore, we consider a test-statistic for testing:

H0 : φ = 0

against
H1 : φ < 0

in the NCAR model in (1).
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Identification

A practical complication of NCAR models is that they cannot be
identified by second-order properties or a Gaussian likelihood

That is, even if Xt is noncausal, its spectral density and, hence, ACF
cannot be distinguished from those of a causal autoregressive process
(Brockwell and Davis, 1987)

This identification problem is circumvented if non-Gaussian errors are
assumed. As such, the following assumption is imposed

Assumption 1. The zero mean error term ǫt is a sequence of
non-Gaussian IID random variables with a (Lebesgue) density
σ−1f

(
σ−1x ;λ

)
which depends on the error variance σ2(> 0) and

(possibly) on the parameter vector λ (d × 1) taking values in an open
set Λ ⊆ R

d .
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Large sample properties of unit root MLEs

Once the error distribution is specified, the parameters of the NCAR
model are estimated by ML

The (approximate) log-likelihood is given by:

lT (θ) =
T−s∑

t=r+1

gt(θ)

where

gt (θ)

= log f
(
σ−1 (vt − ϕ1vt+1 − · · · − ϕsvt+s) ;λ

)
− log σ

= log f
(
σ−1 (∆ut − φut−1 − π1∆ut−1 − · · · − πr−1∆ut−r+1) ;λ

)

− log σ

where ut(ϕ) = ϕ
(
B−1

)
Xt and vt (φ, π) = φ (B)Xt
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Specification

The parameters of the model are given by: θ = (φ, ϑ) = (φ, ϑ1, ϑ2)
where

φ is a long-run parameter ; mean equation

ϑ1 = (π, ϕ) is a vector of short-run parameters ; mean equation

ϑ2 = (σ, λ) is a vector of parameters related to the error distribution
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Large sample properties of unit root MLEs

The vector of first-order partial derivatives for the log-likelihood
(based on a single value) when evaluated at the true parameter value
is denoted

gθ,t (θ0) =

[
gφ,t (θ0)
gϑ,t (θ0)

]

where θ0 signifies the true value of θ (and we assume that H0 holds
so the true value of φ is zero)

Remark: The score of ϑ (evaluated at θ0) is clearly a stationary and
ergodic process similar to the score in Lanne and Saikkonen (2011)
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Large sample properties of unit root MLEs

Before presenting the large sample results of the score we assume:

Assumption 2. For all (x , λ) ∈ (R,Λ), f (x ;λ) > 0 and f (x ;λ) is
twice continuously differentiable with respect to (x , λ) and an even
function of x, that is, f (x ;λ) = f (−x ;λ)

Remark: unlike other authors we assume that f (.;λ) is even. This
assumption is imposed to simplify the limiting distribution of our test

It is also convenient to introduce a new error process ex ,t which is a
normailized derivative of the density of the error distribution
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Large sample properties of unit root MLEs

Assumption 3. (i) E [ex ,t ] = 0 and E
[
e2x ,t

]
= J , where

J =
∫
(fx (x ;λ0)

2 /f (x ;λ0))dx > 1 is finite. Moreover,
Cov [ǫt , ex ,t ] = −σ0. (ii) The score vector gϑ,t (θ0) has zero
expectation and finite positive definite covariance matrix Σ

These assumptions may be verified by the results of Andrews et al.
(2006) and Lanne and Saikkonen (2011)

Remark: J will later on enter our limiting distribution as a nuisance
parameter
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Large sample properties of unit root MLEs

Lemma (large sample results first-order derivatives)

Suppose that Assumptions 1-3 hold. Then,

T−1
T−s∑

t=r+1

gφ,t (θ0)
d
→ Z1 = −

1

σ0π0 (1)

∫ 1

0
Bǫ (u) dBex (u) (3)

where Bǫ (u) and Bex (u) are two dependent Brownian motions, and

T−1/2
T−s∑

t=r+1

gϑ,t (θ0)
d
→ Z2 ∼ N (0,Σ) (4)

Moreover, joint weak convergence applies with Z1 and Z2 independent.
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Large sample properties of unit root MLEs

Furthermore, by gφφ,t (θ0), gϑϑ,t (θ0), and gφϑ,t (θ0) we denote
second-order partial derivatives evaluated at the true parameter values

In order to derive the large sample properties of the second-order
derivatives we assume:

Assumption 4. E [exx ,t ] = −E
[
e2x ,t

]
and E [gϑϑ,t (θ0)] = −Σ with Σ

given in Assumption 3(ii). Moreover, E [exx ,tǫt ] = 0 and E [eλx ,t ] = 0.
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Large sample properties of unit root MLEs

Lemma (large sample results second-order derivatives)

Suppose that Assumptions 1-4 hold. Then,

−T−2
T−s∑

t=r+1

gφφ,t (θ0)
d
→

J

σ20π0 (1)
2

∫ 1

0
B2
ǫ (u) d (u) (5)

−T−1
T−s∑

t=r+1

gϑϑ,t (θ0)
p
→ Σ (6)

and

−T−3/2
T−s∑

t=r+1

gφϑ,t (θ0)
p
→ 0 (7)

Moreover, the weak convergences in (5) and in the previous Lemma hold
jointly and, Z2 in (4) is independent of the limit in (5).
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Large sample properties of unit root MLEs

Denoting Z = (Z1,Z2) and DT = diag
(
T ,T−1/2Ir+s+d

)
we obtain

from the two lemmas the following Theorem.

Theorem (large sample results the score and the hessian)

Suppose that Assumptions 1-4 hold. Then,

ST (θ0)
def
= D−1

T

T−s∑

t=r+1

gθ,t (θ0)
d
→ Z (8)

and

GT (θ0)
def
= −D−1

T

T−s∑

t=r+1

gθθ,t (θ0)D
−1
T

d
→ G (θ0) (9)

where the (block diagonal) matrix G (θ0) contains the weak limits in (5),
(6) and (7), and the weak convergences in (8) and (9) hold jointly with
(Z1,G (θ0)) and Z2 independent.
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Large sample properties of unit root MLEs

To derive the limiting distribution of the ML estimator of θ under the
unit root hypothesis we also need the condition (verified in the
paper): for all c > 0,

sup
θ∈NT ,c

‖GT (θ)− GT (θ0)‖
p
→ 0 (10)

where NT ,c = {θ : DT ‖θ − θ0‖ ≤ c}.

Theorem

Suppose that Assumptions 1-4 and condition (10) hold. Then, with
probability approaching one, there exists a sequence of local maximizers of
the log-likelihood function θ̂T such that

(
DT (θ̂T − θ0),GT (θ0)

)
d
→

(
G (θ0)

−1 Z ,G (θ0)
)
. (11)

Moreover, GT (θ̂T )− GT (θ0)
p
→ 0.
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Unit root testing

The following “t-ratio” type of test-statistic is used to test the unit
root hypothesis:

τT
def
= φ̂/

√
G 1,1
T (θ̂T )

where G 1,1
T (θ̂T ) abbreviates the (1,1)-element of GT (θ̂T )

−1.
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Unit root testing

Theorem

Suppose that Assumptions 1-4 and condition (10) hold. Then

τT
d
→

∫ 1
0 Wǫ (u) dWǫ (u)− (J − 1)1/2

∫ 1
0 Wǫ (u) dW (u)√

J
∫ 1
0 W 2

ǫ (u) d (u)

def
= τ

where Wǫ(u) = σ−1
0 Bǫ (u) ∼ BM (1), and W (u) ∼ BM (1) and

independent of Wǫ(u)
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Unit root testing

Remark: the asymptotic distribution τ is free of nuisance parameters
except for the parameter J which depends on the distribution of the
error term

The nuisance parameter problem will be addressed in our simulation
studies

Tests allowing for trends: by τT (m) we refer to a test based on raw,
demeaned, and detrended data, when m = 0, m = 1, and m = 2,
respectively. The previously considered large sample results are still
valid but demeaned and detrended Brownian motions now apply
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Critical values

A solution the the nuisance parameter problem. It is noted that the
correlation between Bǫ (u) and Bex (u) equals ρ = J −1/2 ∈ [0, 1]

In the following figure the 1st, 5th, and 10th percentiles of τ are
shown as a function of ρ (obtained via simulations)
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Figure: The role of the nuisance parameter J
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Critical values

In this figure, a monotonically decreasing relationship between the
percentiles and ρ is seen

Due to the percentiles monotonicity in ρ it is obvious that if the value
of J would be known, Figure 1 could be used to determine
(conventional) (asymptotic) critical values

We proceed instead with curve estimation of the percentiles by fitting
a second-order polynomial: cvα,m(ρ) = b0 + b1ρ+ b2ρ

2 for
α ∈ {.01, .05.10} and m ∈ {0, 1, 2}. The curve estimates, obtained by
LS, are presented in the following table:
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Critical values

Table 1 Curve estimation results of the percentiles of the τT (m) statistic.

Case Critical value (α) b0 b1 b2 R2

mean-zero data 1% −2.321 −.492 .251 .998
(m = 0) 5% −1.639 −.495 .187 .999

10% −1.276 −.480 .131 .999

demeaned data 1% −2.322 −1.578 .474 1.00
(m = 1) 5% −1.639 −1.591 .367 1.00

10% −1.276 −1.584 .289 1.00

detrended data 1% −2.324 −2.201 .575 1.00
(m = 2) 5% −1.640 −2.230 .462 1.00

10% −1.276 −2.231 .381 1.00
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Estimation of J

In the case of t-distributed errors one can show that:

J =
λ (λ+ 1)

(λ− 2) (λ+ 3)

and an estimate of J is readily obtained via the estimate of λ. This
estimator will be denoted Ĵ1

In the case of “other”distributions (where the calculations not are so
straightforward) we may use:

Ĵ =
1

T − r − s

T−s∑

t=r+1

[
f ′(σ̂−1ǫ̂t ; λ̂)

f (σ̂−1ǫ̂t ; λ̂)

]2

where ǫ̂t = ∆ût − φ̂ût−1 − π̂1∆ût−1 − · · · − π̂r−1∆ût−r+1 with
ût = ϕ̂(B−1)yt . This estimator will be denoted Ĵ2
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Empirical size

In our size studies we use simulate data from a non-stationary
NCAR(1, 1) model with φ = 0 and ϕ1 ∈ {.10, .50, .90}

The error term ǫt follows a Student’s t-distribution with degrees of
freedom λ equal to 3 and standard deviation σ equal to 0.1

The sample sizes used are T ∈ {100, 250}, and the number of
replications are set to 10, 000
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Empirical size

Table 2 Empirical size of the τT (m) test.

mean-zero data demeaned data detrended data
Sample (m = 0) (m = 1) (m = 2)
Size ϕ1 ϕ1 ϕ1

T 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

J .053 .053 .083 .059 .059 .086 .058 .056 .098

100 Ĵ1 .052 .052 .083 .054 .054 .080 .056 .059 .097

Ĵ2 .052 .052 .083 .054 .053 .080 .055 .059 .097

J .054 .047 .045 .063 .061 .055 .057 .052 .056

250 Ĵ1 .053 .046 .044 .058 .058 .054 .056 .052 .057

Ĵ2 .053 .046 .044 .058 .058 .054 .056 .052 .057
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Empirical power

In our power studies we use simulate data from a stationary
NCAR(1, 1) model with φ ∈ [−.4, 0) and ϕ1 = .5

The error term ǫt follows the same distribution as in the size studies

The sample sizes considered are T ∈ {100, 250}.

For comparison we also choose to report the outcomes of the
traditional Dickey-Fuller unit root t-test (based on an AR(2) process)
as well as the t-type unit root test of Lucas (1995) (based on
M-estimation in an AR(1) model assuming strictly stationary
strong-mixing errors)
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Figure: Power T=100 (solid line τT (0); dotted line τDF (0); dashed line M(0))
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Figure: Power T=100 (solid line τT (1); dotted line τDF (1); dashed line M(1))
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Figure: Power T=100 (solid line τT (2); dotted line τDF (2); dashed line M(2))
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Figure: Power T=250 (solid line τT (0); dotted line τDF (0); dashed line M(0))
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Figure: Power T=250 (solid line τT (1); dotted line τDF (1); dashed line M(1))
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Figure: Power T=250 (solid line τT (2); dotted line τDF (2); dashed line M(2))
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Application: Finnish interest rates

In this application the dynamic behavior of Finnish interest rate series
(Government bonds), ranging from 1988:Q1 to 2012:Q4 (T=100), is
examined.

Figure: Government bonds Finland 1988:Q1-2012:Q4
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Application: Finnish interest rates

In this application we shall also take the opportunity and
demosntrate/explain the steps of unit root testing in the NCAR
model in practiceT. The practioner may proceed as follows...

I Fit a causal autoregression (i.e. an AR(p) process) is fitted, and
thereafter we check whether the residuals look non-Gaussian

II If the residuals appear to be non-Gaussian, r and s must be
determined. In our case all combinations of r and s such that
p = r + s are considered. That is, several NCAR specifications may be
estimated and several unit root tests are conducted

III In the case of multiple rejections one may select the model with the
highest likelihood

IV In the case of no rejection, on e may proceed by estimating a NCAr
model using first-differences

Notice that we must assume that r > 0 (otherwise unit root testing
makes no sense; purely noncausal models are ruled out).

Finally, we also abstain from the possibility of unit roots in the
noncausal/future part of the process (mainly due to technical
complications)
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Application: Finnish interest rates

Following the steps in our procedure we notice that...

Using demeaned data (m = 1), an AR(3) was selected by both AIC and
BIC
Using detrended data (m = 2) , an AR(2) was selected by both AIC
and BIC
The Ljung-Box test (4 lags) did not indicate that there are unmodeled
serial correlation
The McLeod-Li test (4 lags) indicates the presence of conditional
heteroscedasticity
The Lomnicki, Jarque, and Bera and the Shapiro and Wilk tests reject
(strongly) the null hypothesis of normally distributed errors
QQ-plots okay
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Application: Finnish interest rates

Inspired by these findings we proceed by unit root testing assuming
that the errors have a Student’s t-distribution.

Using demeaned data (p = 3 = r + s) implies that the unit root
testing is done for two cases, viz. in the NCAR(1, 2) model and in the
NCAR(2, 1) model.

Using detrended data (p = 2 = r + s) implies that the unit root
testing is done only for one case, viz. in the NCAR(1, 1) model.

The outcomes of this unit root testing exercise as well as other
various estimation results are shown in the following tables.
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Application

Table 3 Outcomes unit root test interest rate series Finland

T ∗ = 97 m = 1

cv.05,1 cv.05,1(Ĵ1) cv0.05,1(Ĵ2)

ADF (3) −1.041 −2.860
tNCAR(2,1) −5.101∗∗∗ −2.558 −2.577

tNCAR(1,2) −5.997∗∗∗ −2.542 −2.531

T ∗ = 98 m = 2

cv.05,2 cv.05,2(Ĵ1) cv0.05,2(Ĵ2)

ADF (2) −3.213∗ −3.410
tNCAR(1,1) −5.379∗∗∗ −3.072 −3.048
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Table 4 NCAR MLE results for demeaned interest rate series Finland

m = 1 NCAR specifications: p = r + s = 3
T ∗ = 97 (3,0)-N (3,0)-t (2,1)-t (1,2)-t (0,3)-t

φ −.015 .003 −.472 −.425
π1 .568 .590 .056
π2 −.180 −.084
ϕ1 .941 .873 1.550
ϕ2 .056 −.695
ϕ3 .130
σ .447 .457 .477 .498 .461
λ 3.585 3.017 2.831 4.129
LL −59.556 −49. 111 −46. 052 −45. 637 −53. 437

LB(4) .492 .324 .674 .348 .522
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Table 5 NCAR MLE results for detrended interest series Finland

m = 2 NCAR specifications: p = r + s = 2
T ∗ = 98 (2,0)-N (2,0)-t (1,1)-t (0,2)-t

φ −.104 −.052 −0.418
π1 .505 .563
ϕ1 .806 1.445
ϕ2 −.521
σ .431 .442 .440 .451
λ 3.861 3.293 3.996
LL −57.055 −48. 998 −43. 480 −51. 528

LB(4) .811 .358 .503 .584
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Conclusions

In this paper we derive unit root tests in the NCAR model by Lanne
and Saikkonen (2011).

Large sample properties of the MLEs in the NCAR model are proved
under a unit root assumption

The finite sample properties of the tests are promising. In particular,
the tests are (significantly) more powerful against NCAR alternatives
than the DF tests

In our application to Finnish interest rate series we found evidence in
favour of a stationary NCAR model with leptokurtic errors
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